# Knots and Singularities of Curves

Boston College Undergraduate Colloquium

#### Thomas Hameister

Department of Mathematics Boston College

November 3, 2025

## Knots

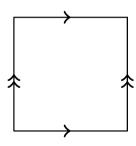
#### **Definition**

By a *knot* we mean a single string in 3 dimensions, possibly tangled around itself, which then has its ends joined together.

- We are allowed to move the string around in 3 dimensions, but we are not allowed to cut the rope or unjoin the ends.
- It can be very difficult to tell if two knots are the same.
- Knots are in our DNA: [VIDEO]

# Example: Torus Knots

- A *torus* is the surface of a donut.
- Can visualize a torus by cutting and unfolding it into a rectangle, thinking of each axis as a circle.

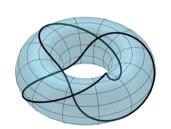


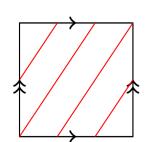
# Example: Torus Knots

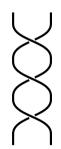
#### **Definition**

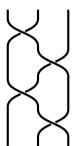
A torus knot is a knot that lives on the surface of the donut without crossings.

We measure a torus knot by two numbers: An (n, m) torus knot wraps n times round the cylinder of the donut and m times around the outer radius of the donut before it rejoins itself.









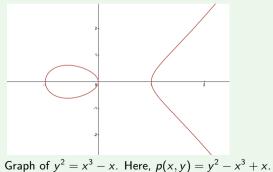
All the diagrams above depict a (2,3) torus knot.

## Curves

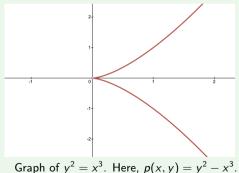
#### Definition

By a curve, we will mean the solutions of a single polynomial equation p(x, y) in 2 variables. (Note: Our equations do not need to be functions!)

## **Examples**







# Singularities

#### **Definition**

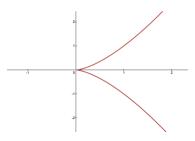
A *singularity* on a curve is a point where the curve is not differentiable; i.e. a point where the graph of the curve has a sharp turn.

You can detect singularities of an equation p(x, y) = 0 by solving for when all the partial derivatives are zero, i.e.

$$p_{x}(x,y) = p_{y}(x,y) = p(x,y) = 0$$

## Example

The curve  $y^2 = x^3$  has a singularity at (0,0).



# Parametrizing Curves

#### **Definition**

- A parametrization of a curve is a set of directions for walking along that curve.
- The directions come in the form of a function f(t), which outputs 2 dimensional coordinates for your position at time t.

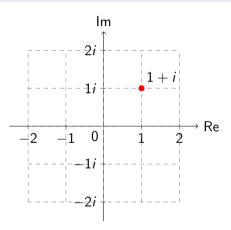
# Examples

The curve  $y^2 = x^3$  is parametrized by  $f(t) = (t^2, t^3)$ . [Animation]

# The Complex Numbers

## Definition

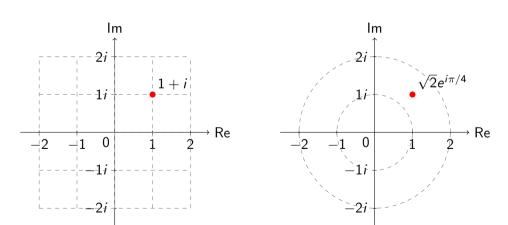
The complex numbers  $\mathbb C$  are all the numbers of the form a+bi where  $i=\sqrt{-1}$ .



# The Complex Numbers

- The space of complex numbers is 2-dimensional.
- Can always write  $a + bi = re^{i\theta}$  using

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$



# Curves over $\mathbb C$

#### Basic Motto

Instead of a 1-D curve in 2-D space, the solutions to p(x, y) = 0 in the complex numbers  $\mathbb{C}$  form a 2-D surface in 4-D space.

## Example

If the curve is y=x, then it looks like  $\mathbb C$  itself. (Solutions to y=x are of the form (u,u) in  $\mathbb C^2$ )

## Example

If the curve is  $y^2 = x^3 - x$ , then it looks like a torus!

## Question

What about the curve  $y^2 = x^3$ ?

# Parametrizing Curves over $\mathbb C$

- To parametrize a curve over  $\mathbb{C}$ , we have to replace the time t with a complex number  $re^{i\theta}$ .
- A parametrization is now a function  $f(re^{i\theta})$ , whose outputs are a pair of *complex* numbers (u, v) in  $\mathbb{C}^2 = \mathbb{R}^4$ .
- [ANIMATION OF SURFACE PARAMETRIZATION IN 3D]

# Example

The curve  $y^2 = x^3$  is parametrized by  $f(re^{i\theta}) = (r^2e^{2i\theta}, r^3e^{3i\theta})$ .

## Question

How can we visualize this parametrization, which lives in 4 dimensions?

# Visualizing in Dimensions You Can't Visualize

## A Thought Experiment

Imagine trying to explain a curve to a 1-dimensional monster.

- This monster doesn't understand what 2 dimensional space looks like; you
  can't let teach this creature how to visualize it.
- How do you explain what the graph of the curve  $y^2 = x^3$  "looks like" over  $\mathbb{R}$  without referencing anything 2-dimensional?



One possible solution: Cut the two dimensional space up into one dimensional pieces and give the monster instructions how to glue it back together.

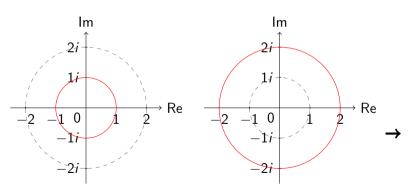
## **Examples**

Consider  $y^2 = x^3$  over  $\mathbb{R}$ . Cut 2-dimensional space up using concentric circles from the origin.

In each circle, there are two points, and we glue them all together as we shrink the radius. [ANIMATION]

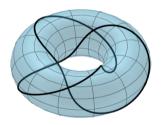
# Becoming the Low-Dimensional Monster

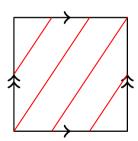
- Consider  $y^2 = x^3$  inside of  $\mathbb{C}^2$ .
- Instead of using circles in  $\mathbb{R}^2$ , we can try to use *tori* in  $\mathbb{C}^2$ .
- This means fixing r and varying only  $\theta$  in the parametrization  $f(re^{i\theta}) = (r^2e^{2i\theta}, r^3e^{3i\theta})$ .



# The Curve $y^2 = x^3$

- We now want to see what  $(r^2e^{2i\theta}, r^3e^{3i\theta})$  looks like when we fix r and let  $\theta$  vary.
- [ANIMATION]





## Conclusions

# Summary

A higher dimensional friend may describe the graph of  $y^2=x^3$  as the "cone over the (2,3)-torus knot."

i.e. Take a line of (2,3) torus knots which are shrinking down to a point and glue them together to get a surface with a sharp point. [ANIMATION]

- In fact, in general, the curve  $y^n = x^m$  is a cone over the (n, m) torus knot.
- This is the *beginning* of the story, not the end!
  - Have a knot attached to any curve singularity.
  - This knot is connected in deep ways to the geometry of the curve.
  - e.g. can recover polynomial knot invariants from interesting spaces ("Jacobians") coming from the singularity.
  - Knots form a bridge between different geometric objects coming from singularities. (e.g. Hilbert Schemes of Points, Affine Springer Fibers, etc.)

# Thanks for listening!